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The paper presents a beam theory for composite girders consisting of two beams joined
together with an adhesive layer. The height of the bottom beam is considered variable. The
governing equations are suitable for formulation of a shape optimization problem in terms of
control theory. The use of Pontryagin’s maximum principle enables finding an optimal solu-
tion satisfying necessary optimality conditions. The presented optimization approach allows
for including issues which cannot be accounted for by commercial topology optimization
software. The introduced theory provides an estimated solution, which is then validated by
an analysis of a 3D finite element model.
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1. Introduction

In recent decades, the use of composite structures has emerged as one of the most efficient solu-
tions in structural engineering. Among a wide variety of distinct types of structures, those made
of glue laminated timber (GLT) are especially suitable for structural optimization. Research
devoted to this problem concerns shape optimization of load bearing elements (Mayencourt and
Mueller, 2020; de Vito et al., 2023), optimization of the structural layout (Hua et al., 2020),
combined shape and layout optimization (Šilih et al., 2010; Kravanja and Žula, 2021) and also
multiple aspects of optimal material usage (Mayencourt and Mueller, 2019; Pech et al., 2019).
With regard to composite structures exploiting advantageous mechanical properties of wood, a
common solution is to combine solid wood or GLT girders with top reinforced concrete (RC)
slabs – reviews on the topic of Timber-Concrete Composites (TCC) can be found in (Clouston
and Schreyer, 2018; Dias et al., 2018). The use of adhesive connections is still not a wide-spread
approach in civil engineering, especially regarding the most heavily loaded bearing elements,
as sufficiently precise modelling and technological issues are still a challenge. Various methods
have been used to perform optimization tasks regarding timber structures, e.g. particle swarm
optimization (Decker et al., 2014), topology optimization (de Vito et al., 2023) or genetic algo-
rithms (Villar-Garćıa et al., 2019). The making use of these methods does not guarantee that
the obtained solutions satisfy necessary conditions of optimality. On the other hand, the use
of Pontryagin’s maximum principle (PMP) provides a solution that indeed satisfies the neces-
sary conditions. The PMP is commonly used for solving one-dimensional control theory (CT)
problems with a temporal independent variable. Its application to problems of structural opti-
mization is thus restricted to one-dimensional problems of structural optimization, such as, e.g.
optimization of rods and beams. Indeed, the PMP has been successfully applied to the problems
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of optimization of cross-section of bar structures (Jasińska and Kropiowska, 2018; Jasińska and
Mikulski 2019; Mikulski et al., 2022; Szeptyński and Mikulski, 2023). Combining the simplified
one-dimensional analytical model of a deformable solid with the general form of equilibrium
equations in two dimensions enables an approximate description of a plane stress state. This is
the approach used in the presented research. We shall consider a composite beam consisting of a
top RC slab and a bottom GLT girder, which are connected by of an adhesive layer. The problem
of shape optimization of the wooden girder is solved by means of the PMP, taking into account
both serviceability and load carrying capacity constraints. The goal of this paper is to present a
beam theory for composite girders and propose a useful method for determining nearly optimal
shapes of such structures, which could not be found by of standard topology optimization tech-
niques, due to specific problem conditions. Detailed engineering design is not the subject of this
research as, in fact, there are still no regulations on the design of glued TCC structures, which is
beyond the scope of the CEN/TS 19103. For these reasons and for the sake of simplicity of the
presented numerical examples, the RC slab dimensioning, reinforcement specification, and crack-
ing of the concrete are not taken into consideration – these issues might be, however, accounted
for in a similar manner as other Eurocode regulations (Szeptyński and Mikulski, 2023). Among
the novel contributions of the presented research to the current state-of-art, the following may be
named:

• Application an anisotropic limit state condition in optimization – standard tools
in topology optimization cannot take the anisotropic limit state condition into account,
being restricted to the use of von Mises equivalent stress, which is applicable to isotropic
solids only (Abaqus Tosca Structure, Ansys Structural Optimization). In both programs,
it is also not possible to create such constraints with the user-defined responses. The PMP-
-based optimization does not suffer from these restrictions as it may take into consideration
arbitrary nonlinear equality or inequality constraints.
• Optimization within the regions with prescribed boundary conditions – the
topology optimization encounters problems when boundary conditions are prescribed in
the design zone, since these conditions must propagate in some way to other nodes if some
of them are removed. It is common to exclude the loaded and supported areas from the
design zone (e.g. both in Tosca and Ansys). This approach usually leads to considerable
overdimensioning of the structure in the supported zone. Contrary to this, the use of a
simplified one-dimensional model enables optimization of the beam height along the whole
length.
• Numerical validation of results obtained via PMP-based optimization – since
the optimization by means of control theory requires a simplified one-dimensional model,
validation of the obtained results has been performed with the use of a three-dimensional
finite element model.

1.1. Scope of research

Three problems will be considered. The first one is derivation of governing equations and
boundary conditions for the problem of bending of a composite beam with the bottom girder
having variable height. These equations will then be transformed into a system of 1st order ODE,
which suits the formalism of the PMP. The second task is solving the optimization problem
for the considered single-span and double-span beams within the framework of the PMP. The
problem is solved numerically by Dircol software which utilizes the direct collocation method.
The third task is the validation of the obtained optimization results through a more detailed 3D
Finite Element Method (FEM) numerical model. Finite element analysis (FEA) is performed
with the use of Abaqus software.
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2. Theoretical description

In the following Section, the theoretical background of the considered optimization problem will
be presented. This includes an analytical model of a multilayer composite beam and an energy-
-based limit state condition for anisotropic materials exhibiting different strengths in tension and
in compression. These equations will then be transformed in order to derive a system suitable
for the application of Pontryagin’s maximum principle.

2.1. Analytical model of a multilayer composite beam

The general theory of linear elastic multilayer composite beams, considered in this research,
is derived and discussed in detail in (Szeptyński, 2020). A beam considered in this analytical
model consists of a finite number of bent panels (beams) and sheared adhesive layers, placed
in an alternating way. Deformation of the adhesive layers is assumed to be governed primarily
by a simple shear state, while the bent panels are described within the Bernoulli-Euler beam
theory. In the present research, the original statement of the problem is specified for the case
of a three-layer beam (top slab + adhesive layer + bottom girder) and generalised in order to
make it capable of taking into account variable height of the bottom panel.

2.1.1. Governing equations

We are considering a composite timber-concrete beam, the cross-section of which is shown in
Fig. 1a. RC slab thickness is h1 and width bpl (which may be considered as the distance between
neighbouring girders), as well as thickness of the adhesive layer is t and GLT girder width b. All
parameters are fixed. The height of the bottom timber girder h2 is the design variable.

Fig. 1. a) Cross-section of the considered composite timber – concrete beam; b) Static boundary
condition on the bottom face of the bottom beam

The derivation of a general form of governing equations from equilibrium equations, presented
in (Szeptyński, 2020) is generalized here in a way enabling accounting for the variable height h2 as
well as bottom surface tractions representing contact stresses over the beam bearings, modelled
by Winkler’s subgrade, see Eq. (2.1). Besides, the method for including the static boundary
conditions on the sloped bottom face of the beam is presented in the following Section. Linear
elastic constitutive relations of Bernoulli-Euler beam theory are assumed for description of both
the RC slab and the GLT girder. The kinematics of a pure shear state is used for description of
deformation of the adhesive layer, in the same way as it is done in classical shear lag theories
(Volkersen, 1938; Goland and Reissner, 1944). Due to relatively small thickness of the adhesive
layer and slenderness of the layers in bending, transverse linear strain may be considered to be
negligibly small. This justifies the assumption that the transverse displacement (deflection) is
the same for both beam components. As a result, the following system of governing equations
is obtained
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In formula (2.1), Ai and Ii stand for the area and 2nd moment of area of the cross-section of
the i-th layer in bending (i = 1 – RC slab; i = 2 – GLT girder), respectively; Ei stands for Young’s
modulus of the material of the i-th bent layer and G1 is Kirchhoff’s modulus of the adhesive;
k is the subgrade reaction coefficient describing stiffness of the bearing (outside the support area
k = 0); w, u1 and u2 are the common deflection of all layers and longitudinal displacements of the
RC slab and GLT girder, respectively. Please note, that the governing equations depend only on
one elastic constant of an anisotropic material, which makes an impression that the anisotropy is
disregarded. This is an apparent inconsistency, since the beams under consideration are assumed
to be slender enough so that the Bernoulli-Euler beam theory may be applied. As a result, both
transverse shear deformation and transverse contraction are disregarded. As a consequence, the
deflection of the beam is determined with just a single elastic constant. Such an approach is
consistent with the use of the anisotropic limit state condition. The equivalent transverse load q̂
is defined as follows

q̂ = q + (h1g1bpl + h2g2b+ t1f1b) (2.2)

where q is the acting load, g1, g2 and f1 are the specific weights of RC, GLT and adhesive,
respectively.

2.1.2. Cross-sectional forces

The axial forces in the layers under bending are equal

N1 = E1A1
du1
dx

N2 = E2A2
du2
dx

N = N1 +N2 (2.3)

where N is the total axial force applied to the composite cross-section. The bending moment
about the point P , placed in the distance ZP from the top surface of the RC slab may be
expressed as follows
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The formula for the transverse shear force – according to Schwedler’s formula – after considering
the equilibrium of axial forces, may be expressed in the following form
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2.1.3. Distribution of stress

Distribution of normal stress in bent layers is given by the following formulae
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−
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dx2
zi
)

i = 1, 2 (2.6)

where zi ∈ (−hi/2;hi/2) is the distance from the centroid of the cross-section of the i-th layer
in bending (Fig. 1a). The shear stress distribution in the adhesive layer is given by the following
formula
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The shear stress distribution in bent layers may be approximated with the use of Zhuravsky’s
formula, by integration of local equilibrium equations
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where τn is the shear stress at the bottom face of the GLT beam resulting from its slope. Let us
denote the transverse normal stress at the bottom face of the GLT beam with pn. The general
static boundary condition for the bottom surface of the bottom layer, Eq. (2.9), enables finding
the boundary shear stress (Fig. 1b)
[
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Transverse normal stress in the layers in bending may be found by integration of local
equilibrium equations
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Since the through-the-thickness distribution of shear stress is quadratic, the transverse nor-
mal stress will be a cubic function of the z-coordinate
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Coefficients Aj, Bj (j = 0, 1, 2, 3) are in fact functions of x, which are determined from the
static boundary conditions and interface equilibrium conditions. The first four conditions are
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where p1,B and p2,T are the peel stresses at the bottom of the top layer (RC slab) and at the
top of the bottom layer (GLT beam), respectively. They may be found from the equilibrium
equation for transverse forces applied to the sheared layer
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The normal stress pn is determined according to (2.9)
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The remaining four conditions are derived from equilibrium equations, which determine the
boundary values of derivatives of these distributions
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2.1.4. Boundary conditions

In order to determine the solution to equations (2.1) unambiguously, it is necessary to pre-
scribe appropriate boundary conditions. The static boundary conditions on the top face of the
RC slab and on the bottom face of the GLT girder are taken into consideration both in the
governing equations and in the formulae for transverse normal stress. The sidewalls are assumed
to be traction-free boundaries. The static boundary conditions are prescribed in an analogous
way to classical beam theory as the conditions for end-values of cross-sectional forces.

2.2. Energy-based limit state condition for anisotropic materials with an asymmetric

elastic range

A crucial aspect of the design of timber structures is the anisotropy of mechanical and
strength properties of the material. It has been noted that in the case of slender beams, the
anisotropy of elastic properties is of minor importance – it is not so regarding the strength
properties of wood. An important feature is also the asymmetry of the elastic range, namely the
difference between the limit values of tensile and compressive stress. Material properties corre-
sponding with appropriate strength classes of structural timber can be found in the EN 338:2016
standard. However, standards regulating the structural design of timber structures may not spec-
ify any general approach to determine the ULS condition in the case of an arbitrary complex
stress state. Only certain specific combinations of simple mechanical states are considered in the
EN 1995-1-1:2010. In the considered optimization process, a general plane stress state is consid-
ered. For this reason, the energy-based limit state condition for orthotropic material exhibiting
asymmetry of elastic range is used (Szeptyński, 2017)

F (σ) = AIσ2I +BIσI +AIIσ
2
II +BIIσII +AIIIσ

2
III ¬ 1 (2.16)

where projections of the current stress state on elastic eigensubspaces are equal

σI = σ11 cos κ+ σ22 sinκ σII = −σ11 sinκ+ σ22 cos κ σIII = σ12 (2.17)

The parameter κ is a function of the stiffness distributor. In (Szeptyński, 2017), one may find
formulas for the parameter κ as well as coefficients AI , AII , AIII , BI , BII , expressed in terms of
elastic constants and strength values. All these parameters can be found e.g. in the EN 338:2016,
except for Poisson’s ratio, however in the EN 1995-2:2004 it is allowed to take ν = 0.

2.3. Formulation of the control theory problem

The optimization problem considered in this article may be stated as follows:
— minimize the total amount of GLT
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— subject to the following constraints
– Ultimate Limit State (ULS) condition

F (σ) − 1 ¬ 0 (2.19)

– Serviceability Limit State (SLS) condition

wmax − wadm ¬ 0 (2.20)

where wmax is the maximum deflection, while wadm is the maximum admissible deflection. The
problem is meant to be solved with the use of Pontryagin’s maximum principle. For this reason,
the problem must be formulated in the form of a system of the 1st order ordinary differential
equations (ODE). Let us introduce the following state variables
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We introduce a single control variable, namely

U1 =
d2h2
dx2

(2.22)

According to (2.18), the objective function is given by the integral functional stating the La-
grange optimization problem. It may be transformed into the Meyer optimization problem by
introduction of an additional state variable and defining a new objective function J

X11(x) = V (x) = b
x∫

0
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The new initial condition X11(0) = 0 must be also prescribed. After this transformation, the
governing equations take the following form
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Cross-sectional forces and stresses may then be calculated according to equations (2.3)-(2.8)
and (2.11) after expressing the derivatives of displacement functions in terms of the introduced
state variables. The set of admissible values of the control variable is also defined. The final
formal statement of the control theory problem is complex as the form of necessary optimality
criteria depends on whether the constraints are active or not. The mathematical structure of a
formulation of control theory problem subjected to PMP-based optimization may be found in
(Mikulski et al., 2022).
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3. Numerical results

The single-span beam is assumed to be 15m long with 40 cm at both ends resting on elastic
supports. The double-span beam is assumed to be symmetrical, 28m long, with two identical
14m long spans, resting at both ends on 40 cm long elastic supports 40. The middle support
is 60 cm long. The girder cross-sectional dimensions are assumed as follows: RC slab thickness
h1 = 32 cm, its width (distance between neighbouring GLT girders) bpl = 100 cm, and the GLT
beam width b = 30 cm. The adhesive layer is t = 2cm thick. The elastic and strength prop-
erties of wood are adopted as for GL 26h, while mechanical properties of concrete are chosen
as for C30/37 concrete class. The adhesive layer is assumed to be made of the SikaPSM flex-
ible, virtually incompressible polyurethane adhesive, with Kirchhoff’s modulus G = 1.4MPa
(Kwiecień, 2012; Śliwa-Wieczorek et al., 2020). The total load applied to the beam includes the
dead load of RC slab g1 = 25 kN/m3 and GLT girder g2 = 4.37 kN/m3 as well as the dead
load of non-structural elements and live load, which together sum up to q = 35 kN/m2. The
subgrade reaction modulus is assumed to be equal to k = 380MPa/m, as for an elastomeric
support according to EN 1337-3:2005. In the supported section of the beam, the coefficients
in the anisotropic limit state condition (2.16) are modified, namely, the compressive strength
perpendicular to grain is increased by 75% according to Eurocode 5 recommendations 6.1.5 (2)
and (3) of EN 1995-2:2007. Only a single load combination is considered, namely the one corre-
sponding to uniform distribution of q, however the formulation of the problem and its solution
may easily be expanded in order to account for multiple load combinations. The maximum ad-
missible deflection is assumed to be wadm = L/250. The range of admissible values of the control
variable is U1 ∈ (−0.1; 0.1), while the height of the GLT beam itself may vary within the range
h2 ∈ (0.3m; 1.15m).

3.1. Results of the PMP-based optimization

The optimization problem stated in the previous Section is solved with the use of Dircol
software. The results of completed optimization tasks for both analysed beams are presented in
Figs. 2-4. Figures 2 and 3 illustrate the distributions of the GLT girders heights and deflections
of optimal beams, respectively. The distribution of the magnitude of the left-hand side of the
ultimate limit state criterion (material effort – see Eq. (2.17)) presented in Fig. 4, is plotted for
five values of the z-coordinate, corresponding with the top, middle and bottom material fibres,
as well as two additional intermediate coordinates.

Fig. 2. Optimal distribution of the GLT girder height h2(x): (a) single-span beam, (b) double-span beam

An important feature of the obtained results is that in both analysed cases (the single and
double-span beams) both SLS and ULS constraints are active. The highest material effort,
activating the ULS constraints, appears at the bottom fibres (z = 0, 5h2) for both girders. It



Analytical modelling and shape optimization of composite girder... 137

Fig. 3. Beam deflections with SLS: (a) single-span beam, (b) double-span beam

Fig. 4. Material effort: (a) single-span beam, (b) double-span beam

was observed that the acquired optimal control is singular, which means that the Hamiltonian
of the system is piecewise constant. See Büskens et al. (2001) for a more detailed discussion.

3.2. Comparison with the 3D FE model

The optimal solutions obtained based on beam theory are compared with the results of a
three-dimensional (3D) finite element analysis (FEA) performed with the use of Abaqus software.

3.2.1. Description of the FEM numerical model

The geometries of the 3D FEM girders models are assumed as follows: all cross-sectional and
longitudinal beam dimensions, as well as material properties (span and support zone lengths)
are the same as adopted for the above discussed 1D model (see the first paragraph of Section 3).
The distributions of heights of the GLT girders (h2) are taken from the results of the PMP
based optimization (see Fig. 2). Both the concrete slab and GLT girder materials are assumed
to be isotropic and linearly elastic. Since a pure shear elastic material model is not available in
Abaqus, the adhesive is also assumed to be linearly elastic with Ea = 4.14MPa and νa = 0.48.
The FEM mesh consists of linear hexahedral 8 node elements. The large number of used elements
(over 100000) results from the necessity of precise modelling of the variable beam shapes, while
keeping regular meshes, to obtain smooth stress maps along curved surfaces representing GLT
fibres. The bearing supports are realized by applying linear vertical springs (with stiffnesses
summing up to k = 380MPa/m) to nodes at the bottom girder surfaces in the support zones.

3.2.2. Comparison of results obtained with 1D beam and 3D FEA models

The distributions of displacements and stress tensor components found with the use of Dircol
and Abaqus for both beams are compared in Figs. 5-9.
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Since the bottom fibres of the GLT girder experience the highest stress levels (see Fig. 4),
only these distributions are presented. The comparison of deflections of the single-span beam
obtained by Dircol and Abaqus is presented in Fig. 5, whereas stress tensor components and
measures of the material effort are compared in Fig. 6.

Fig. 5. Comparison of deflection of a single-span beam obtained from the 1D beam and 3D FEA models

Fig. 6. Comparison of stress measures obtained from the 1D beam model and 3D FEA for bottom fibres
of the GLT single-span beam: (a) axial normal stress, (b) shear stress, (c) transverse normal stress,

(d) material effort

Fig. 7. Comparison of deflection of a double-span beam obtained from the 1D beam and 3D FEA models

Analogous comparisons of deflections and stresses obtained by Dircol and Abaqus for the
double-span beam are collated in Figs. 7 and 8, respectively. Additionally, the distributions of
shear stresses in the adhesive layers are compared in Fig. 9.
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Fig. 8. Comparison of stress measures obtained from the 1D beam and 3D FEA models for the bottom
fibers of the GLT double-span beam: (a) axial normal stress, (b) shear stress, (c) transverse

normal stress, (d) material effort

Fig. 9. Distribution of shear stress in the adhesive layer in (a) single-span beam, (b) double-span beam

4. Discussion

Analysing the comparison of stresses and deflections of optimal beams acquired with the 1D
composite beam and 3D FEA models, under the same material assumptions (linear elasticity of
all materials, isotropy of elastic constants of timber with the anisotropic limit state condition),
presented in Section 3.2, one can note that:

• The 3D FEM model gives slightly smaller displacements (Figs. 5 and 7). Relative dif-
ferences amount to 8% for the single-span beam and 4% in the case of the double-span
beam.
• There is good agreement between the two models in stress distributions for both beams
(Figs. 6 and 8). The ULS is active in these traction-free areas of the bottom fibres in both
girders (Figs. 6d and 8d). Analysing the material effort in the 3D FEM model, one can
notice that for the single-span beam the ULS is violated only pointwise by 2% (Fig. 6d)
and is not exceeded in the case of the double-span beam (Fig. 8d).
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• The greatest discrepancies between these two models concern the shear stresses in the
adhesive layer (Fig. 9). This can be attributed to the simplifying assumption made in the
1D model according to which the adhesive layer undergoes simple shear deformation only,
whereas in the FE analysis a general three-dimensional stress state is considered.
• One worrying result is the maximal deflection, which was greater for the 1D beam model
than for the one obtained from the 3D FEA. One should expect that the 1D model,
which is more severely constrained due to Bernoulli’s hypothesis, should exhibit greater
flexural rigidity. This result may be explained by the fact that in the simplified 1D model
the longitudinal stiffness of the adhesive was completely disregarded as the adhesive was
assumed to undergo simple shear only – in this sense this model is more compliant than
the FEA model in which the three-dimensional stress and strain state is fully accounted
for.

5. Summary and conclusions

The problem of shape optimization of a TCC beam with an adhesive layer has been stated.
Governing equations have been derived, as well as expressions for cross-sectional forces and
stresses. The problem has been reformulated in order to make it suitable for the application
of Pontryagin’s maximum principle. The optimization task has been carried out with the use
of Dircol software for two composite beams – single and double span. Two constraint types
have been considered: SLS condition restricting the maximum deflection and the ULS, which
is formulated as a single inequality constraint making use of the energy-based estimate of the
material effort for orthotropic materials exhibiting asymmetry in the elastic range. Both the ULS
and SLS conditions are active in the obtained solutions. The observed discrepancies between the
1D beam theory solution and the results of 3D FEA indicate that the results obtained from
the PMP-based optimization cannot be used without additional elaboration, however, the final
shape may be easily found even by manual adjustment of the optimal solution obtained from
the 1D beam model, according to the maps of the material effort.

Fig. 10. Comparison of optimal double-span GLT girders obtained under isotropic and anisotropic limit
state conditions: (a) height distribution, (b) material effort along bottom beam fibers

To estimate material savings achieved by shape optimization of the girders, the volumes of
optimal beams have been compared with the volumes of composite beams with the same span
lengths, loads and supports, but a constant GLT girder height. Minimal heights for which the
SLS and ULS were not exceeded, and were adopted for this comparison. The relative material
savings for the single-span beam are approximately 8%, while for the double-span beam 30%.
An important conclusion arises when the anisotropy of the GLT is totally neglected in the task
formulation, namely, when the timber is considered as an isotropic solid. Such an approach might
be the first approximation in an optimization procedure. It can be shown that considerable errors
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may occur when the anisotropy is not involved. In Fig. 10a, the optimal shape of the double-span
beam obtained for the beam with the anisotropic limit state condition is compared with the one
corresponding with the HMH condition (isotropic limit state condition).
In the case of the beam with the isotropic yield condition only the SLS constraint is active,

wheteas if anisotropy is taken into account both SLS and ULS conditions are active (Fig. 10b).
This is especially important when considering the fact that commercially available optimization
programs offering topology or shape optimization often do not support anisotropy of strength
properties (e.g. Tosca Structure). Even if anisotropy of elastic properties is taken into account,
the fully stressed body optimization procedures can be governed only by isotropic limit state
conditions such as the Huber-Mises-Hencky yield condition.
The performed analyses enable formulation of the following conclusions:

• The one-dimensional analytical model of a composite beam is suitable for application in
the formalism of an optimization task of a control theory problem solved with the use of
Pontryagin’s maximum principle.
• A singular optimal solution may be found, for which both SLS and ULS constraints are
active.
• Simplifications due to reduction of the dimension of the problem in the Bernoulli-Euler
beam theory do not introduce significant errors neither in deformation nor in measure of
the material effort.
• The results of the optimization of the 1D model need validation with the use of more
accurate numerical models.
• The performed analyses prove that accounting for anisotropy of strength properties of the
material and asymmetry of the elastic range play an important role in the optimization of
timber beam structures. Failure to take into account for material anisotropy may lead to
significant errors.

The proposed approach may readily be applied for shape optimization of composite beams with
adhesive layers with any other support and load layout with multiple load cases taken into
account.
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